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Vibration-based structural damage
detection using |1-D convolutional
neural network and transfer learning

Shuai Teng', Gongfa Chen'(®, Zhaocheng Yan',
Li Cheng? and David Bassir®

Abstract

This paper presents a novel vibration-based structural damage detection approach by using a one-dimensional convolu-
tional neural network (I-D CNN) and transfer learning (TL). The CNN can effectively extract structural damage infor-
mation from the vibration signals. However, the CNN training needs enough samples, while some damage samples
(scenarios) obtained from real structures are limited, which will compromise the CNN ability to detect structural dam-
age. As a solution, the numerical models have potential to provide sufficient CNN training samples; meanwhile, the
state-of-the-art TL technique can significantly shorten the network training time and improve the accuracy. Therefore,
this paper proposes a new method to detect the damage of a bridge model. The 1-D CNN is firstly trained with the
samples of the single damage scenarios of the numerical bridge model. And then it is transferred to the complex scenar-
ios of multi-damage (double or triple simultaneously), random size structures, and experimental model. The results
demonstrate that: with the TL, the accuracy of damage detection is increased by about 47% at most, and the conver-
gence speed is increased by at least 50%; in particular, the TL can inhibit overfitting, and for the real bridge case, the
accuracy also increased by 44.4%. It is demonstrated that: the TL can effectively improve the damage detection accuracy
and convergence effect, and the application of this method to the random size structures also proves its generalization.
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evaluation of the overall performance of structures.
Especially for the damage inside structures, the image
recognition-based SDD method 1is inapplicable.
However, the changes of structural stiffness, mass, and
damping will induce the changes of structural vibration
information,® for example, the natural frequencies,”
mode shapes,” and their derivatives (modal flexibility,®
curvature,” modal strain energy,®’ etc.); the change of
these information can reflect the damage state of the

Introduction

Structural damage detection (SDD) is widely concerned
in structural health monitoring (SHM).! The structural
fatigue damage (caused by the harsh environment and
long-term loading) is the most common damage type
during the service of infrastructures.” Timely SDD can
effectively prevent the sudden collapse of the infrastruc-
tures and protect the people’s life and property. The
manual inspection, image recognition, and vibration
characteristic analyses are popular SDD methods. The

manual inspection is labor-intensive, subjective, and
the inspectors need on-site observations; for some high
and/or hard-to-reach infrastructures, the inspectors
face some potential risks. The image recognition tech-
nology can replace some manual operations; especially
with the most advanced image acquisition devices and
image recognition algorithms, the detection efficiency
and accuracy have been significantly improved.
However, the image recognition can only detect the
structural surface defects, which is insufficient for
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structure concerned. Meanwhile, with the progress of
signal processing technology (e.g., the Kalman Filter,"”
Principal Component Analysis (PCA),'! etc.), the
vibration signal-based (acceleration'> and displace-
ment'®) SDD methods have attracted extensive atten-
tion and achieved encouraging results; however, in
most cases, the manual diagnosis is still needed. As an
alternative, the artificial neural network (ANN) is a
more potential, intelligent, and automatic signal pro-
cessing and detection tool for vibration-based SDD
method.

The ANN technology provides a new way to detect
structural damage; it enables the network to automati-
cally learn from the experience, and the learning
knowledge is applied to the detection scenarios of the
corresponding structures of interest. The ANN algo-
rithm has been widely used in vibration-based SDD.
The relevant research has confirmed that using the
back-propagation (BP) algorithm to train neural net-
works'* has achieved encouraging results, and it has
been applied to damage detection methods based on
parametric (modal shapes and their derivatives) and
non-parametric (vibration) signals. For example, dam-
age detection of a truss'” and steel frames,'®!” and also
has been validated in the real models (simple supported
beam'® and bridge model'”). However, the above meth-
ods all need to extract a set of fixed features by some
popular signal processing methods (e.g., the modal
analysis, PCA, and wavelet decomposition®® %?).
Furthermore, the BP neural network is prone to over-
fitting, weak generalization ability, and high computa-
tional cost, which will compromise its effectiveness in
SDD. As an algorithm of deep learning (DL), the con-
volutional neural network (CNN) has better perfor-
mance than BP-trained neural networks by introducing
the weight sharing and partial connection mechanism,
and multiple functional layers, through which the fea-
tures can be extracted directly from the original data.
There are also some limitations in some scenarios (e.g.,
too few samples are likely to lead to poor generaliza-
tion ability). As an auxiliary strategy, the transfer
learning (TL), which takes the model developed for
Task A as the initial point and reuses it in the process
of developing the model for Task B, can effectively
solve the generalization problem of the CNN.

As a DL algorithm, the CNN provides an unprece-
dented method for SDD, because of its excellent fea-
ture extraction ability and powerful computing
performance. The superiority of the CNN has been
proved in SDD from the modal information,** accel-
eration signals,”> and surface defect images.”® For
vibration-based methods, firstly, a damage detection
case of a benchmark structure (numerical and

experimental’’) based on the 2-D CNN proves its
effectiveness. As an alternative, the 1-D CNN achieves
breakthrough progress in electrocardiogram (ECG)
detection,?® engine detection,” and voltage/current
detection of electronic equipment.*® These cases illus-
trate the excellent performance of the 1-D CNN in sig-
nal processing. In civil engineering, the 1-D CNN is
used in damage detection of a laboratory frame®'?
and the mass change detection of a real bridge.>’
Recently, by fusing the detection results of multiple 1-
D CNN:s, the accuracy of damage detection is signifi-
cantly improved, which has been confirmed by the
numerical and experimental bridge models.** The rele-
vant research shows that the 1-D CNN is easier to
train, and the detection speed is 45 times that of a 2-D
CNN.* Although the SDD method based on the
CNN has achieved encouraging results, for structures
in service, the structural damage samples that can be
obtained are limited (the generalization ability of CNN
is poor, and it is difficult to detect the corresponding
structure); meanwhile, training a CNN from scratch is
an arduous task, especially for the complex detection
tasks, these challenges will compromise the further
application of the CNN in practical engineering. The
TL-based CNN method provides a new solution to
further improve the training effect and detection accu-
racy (especially improve the generalization ability of
CNN).

Related works

The TL technique can transfer the knowledge from the
source domain to the target domain, and it will provide
a potential and excellent SDD/SHM method. It has
been widely used in the field of image recognition and
achieved excellent results in structural surface defects
detection.*®*” Li et al.*® collected crack image datasets
of bridges, walls, and houses as the training samples of
a pre-trained network, and then transferred it to the
concrete dam crack detection task, which greatly
improved the detection accuracy (limited images of
concrete dam cracks). Zheng et al.** used a pre-trained
network obtained from the COCO dataset and applied
it to the detection task of rail surface defects through
the TL (there are only 102 images in the rail surface
defect dataset, the classical non-transfer learning
(NTL) method is not available). The results show that
the ideal detection effect can be obtained through the
TL strategy. These cases prove that the TL can achieve
better detection performance with limited training sam-
ples. In the field of SDD, it is still faced with the prob-
lem of Ilimited training samples, especially for
structures in service, it is difficult to obtain a large
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number of samples in the damage scenarios, so the TL
will be a potential solution.

The TL also shows excellent performance in signal
processing. A study realized the fault diagnosis method
of rolling bearing through the TL,*® and heartbeat
murmurs detection in phonocardiogram recordings via
the TL.*' These excellent performances advocate its
potential application in SDD field of bridge structures;
for real structures, the damage samples of structures
are limited, and it is difficult to obtain a CNN model
with excellent performance. Therefore, obtaining a
large number of CNN training samples through numer-
ical simulations and transferring it to the damage detec-
tion of actual structures is a potential solution to the
shortage of samples. Thus, this paper will explore the
TL in vibration-based SDD, that is, using a population
of bridge numerical models to train the CNN (pre-
trained CNN), and then using a small amount of actual
structure samples to fine-tune the pre-trained CNN
model to adapt to the damage detection task of actual
structures. In summary, the novel contributions are as
follow: a pre-trained network is established through
simple detection scenarios and then it is transferred to:
(1) In complex detection scenarios (double and triple
damages simultaneously), it will be proved that the TL
can realize damage detection in similar scenarios; (2) In
random size structures, the generality of the proposed
method will be confirmed; (3) In an experimental
model, the practical value of the proposed method will
be confirmed; and (4) In a real bridge case, the reliabil-
ity of the proposed method will be validated.

Methods

In this paper, the population of bridges (some similar
numerical models) of single damage scenarios were
first established, and then a CNN model with strong
compatibility was obtained as a pre-trained network
model. Subsequently, the pre-trained CNN was trans-
ferred to various damage scenarios of other numerical
models, an experimental model, and a real bridge case
(Figure 1).

Double
;~"» damage
{ scenarios P
' ——————— Single
J Triple ™ damage
. v-->» damage scenarios
Single scenarios —
damage =S CNN =
scenarios Random Double
"7 size models [ [ ] damage

scenarios
i Triple
Experimental damage
--- >
model scenarios
Real
g bridge case

Figure I. Implementation strategy of proposed method.

CNN and transfer learning

In this paper, a 1-D CNN was established by using the
“Deep Learning Toolbox” of MATLAB (MathWorks
Inc., Natick, MA, USA), including two convolution
layers, one pooling layer, two activation layers (with
the Leaky ReLU activation function), one fully con-
nected layer, and one softmax layer (see Appendix A
for the principle of the 1-D CNN). Detailed network
parameters are shown in Table 1. According to the pre-
vious research results, the damage detection strategy
based on the 1-D CNN and decision-level fusion has
achieved excellent results,®* that is, the data obtained
at each acquisition point were used to train a 1-D
CNN respectively, and the detection results of multiple
I-D CNNs (acquisition points) were fused to obtain
the final detection result. This paper will inherit this
method.

TL is a DL method, which transfers knowledge from
one domain (previous domain) to another domain
(novel domain).** Through the training of previous
domain, the network model has strong ability of fea-
ture extraction for the similar data; subsequently, just
with fine-tuning (re-training) it with the new data in
different scenarios, the network model will quickly
adapt to the new detection task (Figure 2). With this

Table |. Parameters of the 1-D convolutional neural network (CNN).

Layer Type Kernel num. Kernel size Stride Activation function
| Input None None None None

2 Convolution (Conv_I) 128 3 X1 | Leaky ReLU

3 Max pooling None 2 X | | None

4 Convolution (Conv_2) 256 2 X | | Leaky ReLU

5 FCN None None None None

6 Softmax None None None None

7 Classification None None None None
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Previous domain

((':I>

Neural network

Novel domain

Damage detector
(novel domain)
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Figure 2. Damage detection method using the transfer learning (TL).

method, a lot of training time of the CNN will be saved
for the novel domain, and better training effect can be
achieved, especially when there are limited training
samples in the novel domain.

The TL strategy implemented in this paper included
the following processes:

Process 1: Training a 1-D CNN to detect single damage
of the numerical simulations (population of bridge) to
build a pre-trained CNN model;

Process 2: The pre-trained 1-D CNN was transferred
to multi-damage detection tasks (double and triple
damages simultaneously) and 10 random size struc-
tures of the numerical simulations. The specific opera-
tion is shown in the Figure 3; in Process 1, the pre-
trained Network A was obtained through the classical
training process using these pre-trained CNN samples.
On this basis, the TL strategy was implemented, that is,
the fully connected layer (fc) of the pre-trained network
was replaced by a new one (new_fc). Then, the samples of
the new damage scenarios were used to fine-tune the mod-
ified network to adapt to the new damage detection task;
Process 3: The pre-trained 1-D CNN was transferred to
the damage detection task of the experimental model.
Process 4: The pre-trained 1-D CNN was transferred to
the damage detection task of the real bridge case.

Experimental and numerical models

A real bridge model (Figure 4(a)) was used in this
paper for the vibration experiment, and its length,

width, and height were 2.4, 0.3, and 0.3 m, respectively.
This bridge model consisted of 58 flat steel bars, which
had a rectangular cross section (0.02 m X 0.002 m)
and were connected by the bolts. The vibration was
excited and measured by using the following equip-
ment: an instrumented hammer, a JM3840 dynamic
data acquisition instrument, seven accelerometers, and
a laptop. Various damage scenarios were realized by
replacing the intact flat bars with damaged ones (the
flat steel bar was cut, Figure 4(b)).

A numerical model of the bridge structure (Figure
5) was established using ABAQUS (SIMULIA Inc.,
Providence, RI, USA). The elastic modulus, Poisson’s
ratio, density, and modal damping ratio were 210 GPa,
0.3, 7,800 kg/m?, and 0.03 respectively for the bridge
model. All flat steel bars were meshed with beam ele-
ment (B31 type). The 58 flat steel bars were named
FSB-1, FSB-2, ..., FSB-58 respectively. The structural
damage was induced by reducing the elastic modulus at
the damage location.

Data and experimental setup

Firstly, for the damage detection of the numerical
model (Figure 5), four datasets were established:

Dataset (A), based on Section “Experimental and
numerical models,” the following two random factors
were applied to the model. With these two factors, 100
numerical bridge models with randomly created geo-
metric dimensions and excitation forces were obtained;
thus, a population of bridge models was created. This
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Figure 3. Specific operation of transfer learning (TL).
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Figure 4. The bridge model with 58 flat steel bars: (a) bridge
model and (b) damaged flat steel bars.
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Figure 5. The numerical bridge model with 58 flat steel bars.

The random amplitude curves were given during the load-
ing process of excitation forces (Figure 6), so random
vibration was induced on the structure.

The scenarios with a single damage of the flat steel bars
was studied, which means that a damage in one flat steel
bar was considered for each damage scenario. For each
structure, the structure consisted of 58 flat steel bars; thus,
there were 59 structural scenarios, including 58 damage
scenarios plus the intact structure.

method can effectively improve the compatibility of a
CNN and reduce the impact of environment on struc-
tural vibration.*?

Factor 1: Geometric dimensions

Based on the bridge model, its length, width, and height
were randomly modified between —50% and + 50%.

Factor 2: Excitation forces (amplitude curves)

Dataset (B), the scenarios with damages simultane-
ously in two flat steel bars, 2 of 13 flat steel bars (FSB-
1, FSB-5, FSB-10, ..., FSB-55, FSB-58) were randomly
selected; there were 78 (Cﬂ) damage scenarios.

Dataset (C), the scenarios with damages simultaneously
in three flat steel bars, 3 of 13 flat steel bars (FSB-1,
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Table 2. Random scaling factor of the models.

Ml M2 M3 M4 M5 Mé M7 M8 M9 MI10
Length .19 1.24 0.78 1.25 1.08 0.76 0.87 1.03 1.27 1.28
Width 0.87 I.11 1.09 0.80 0.77 1.00 1.28 0.90 1.05 0.83
Height 0.80 1.18 0.89 1.02 0.80 1.06 0.86 1.09 .11 .15

Figure 6. Random excitation force loaded into the numerical
bridge model.

FSB-5, FSB-10, ..., FSB-55, FSB-58) were randomly
selected; there were 286 (C%) damage scenarios.
Dataset (D), in order to validate the generality of the
proposed method, this paper extends it to 10 numerical
models (M1-M10) with random geometric dimensions
(the random scaling factor (length, width, and height)
were (£30%), shown in Table 2). For each model, its
datasets with single damage, double damages, and tri-
ple damages were obtained. The sub-datasets of the 10
models were named Sub-Dataset M1, Sub-Dataset M2,
Sub-Dataset M3, ..., Sub-Dataset M 10, respectively.

The data of the above multiple structural scenarios
were obtained through the parametric analysis method
(ABAQUS platform and PYTHON scripts). It was
assumed that the damage level of the flat steel bars was
proportional to the reduction of its elastic modulus. In
this paper, the elastic modulus of the flat steel bars at
the damage location was reduced by 60%. Two consec-
utive impulse excitations (800 and 1000 N) were
applied to the structure at the excitation point, and
then the acceleration signals of 400 sampling points
(the sampling time of 4 s with an increment of 0.01 s)
for each impulse excitation was collected. The CNN
samples were created as follow:

As shown in Figure 7, the vibration signals (1 X 400
array) of the acquisition point A (Figure 1) generated
by an excitation, including 400 sampling points, was
divided into four equal parts through the fixed size win-
dows, that is, 4 samples (4 1 X 100 array); therefore,
according to this method, the sample number of the
four datasets was defined as (Table 3):

Dataset (A): 3304 samples (4 X 7 (acquisition points)
X 59 (structural scenarios) X 2 (two excitations)).

Dataset (B): 4368 samples (4 X 7 (acquisition points)
X 78 (structural scenarios) X 2 (two excitations)).
Dataset (C): 14,336 samples (4 X 7 (acquisition points)
X 256 (structural scenarios) X 2 (two excitations)).
Dataset (D): each sub-dataset (Sub-Dataset (M#))
included the scenarios with a single damage (3304 sam-
ples), double damages (4368 samples), and triple dam-
ages (14,336 samples).

Secondly, the intact flat steel bars were replaced
by the damaged ones (the flat steel bar was cut,
Figure 4(b)) in the experimental model, and the follow-
ing 15 structural states were designed (Table 4) to simu-
late various damage scenarios. Each structural scenario
was stimulated three times by a hammer, the data
obtained from the first and second stimulations were
used as the training samples, and the data from the
third one was used as the testing samples. According to
the above sample acquisition method (Figure 7), the
numbers of training samples and testing samples were
840 (4 X 7 (acquisition points) X 15 (15 structural sce-
narios) X 2 (2 instantancous excitations)) and 420
(4 X 7 (acquisition points) X 15 (15 structural
scenarios) X 1 (1 instantaneous excitation)) respectively.

Real bridge case

This case used the dataset obtained from a 15 months
monitoring activity on a steel string railway bridge in
Leuven, Belgium.** During this monitoring activity,
the connecting components between the bridge deck
and arch were strengthened after damage was observed.
This railway bridge was also known as KW51 railway
bridge (as shown in Figure 8, the geographic coordi-
nates were 50.9004 N and 4.7066 E). The bridge was
bowstring type, length: 115 m and width: 12.4 m. The
bridge was located on the L36N railway line between
Leuven and Brussels, across the Leuven-Mechelen
canal.

The railway bridge was monitored since October 2,
2018. From May 15 to September 27, 2019, the bridge
was reconstructed to solve the construction errors
found during the inspection. The connecting compo-
nents of the arch and bridge deck were strengthened
during the reconstruction. Figure 9 shows images of
these connections before and after the retrofitting, as
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Table 3. Dataset summary of numerical models.

Dataset

Dataset (A) Dataset (B) Dataset (C) Dataset (D)
Training samples 165,200 2184 7168 110,040
Testing and validation samples 165,200 2184 7168 110,040
Total 330,400 4368 14,336 220,080
Fifty percent of these samples were used for training and the rest 50% for testing and validation.
Table 4. The damage scenarios of experimental model.
Structural state State | State 2 State 3 State 4 State 5
Damaged location Intact structure NI N2 N3 N4
Structural state State 6 State 7 State 8 State 9 State 10
Damaged location NI1&N2 NI&N3 N1&N4 N2&N3 N2&N4
Structural state State 11 State 12 State 13 State 14 State 15
Damaged location N3&N4 NI1&N2&N3 NI&N2&N4 NI1&N3&N4 N2&N3&N4

N# represents the damaged location (Figure 1).
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Figure 7. The sample acquisition of the convolutional neural
network (CNN).

well as images of scaffolding installed on the bridge
during the retrofitting engineering. For each connecting
component, a steel box was welded around the original
bolted connection intersecting the arch and bridge deck
(as shown in Figure 9(a) and (c), before and after retro-
fitting, respectively). The data used in this paper were
collected before the retrofitting (October 27, 2018), dur-
ing retrofitting period (July 18, 2019), and after the ret-
rofitting (November 14, 2019). And six accelerometers
were mounted on the bridge deck.

Results and discussions

For the numerical model, Dataset (A) was first used
for the 1-D CNN training, and then the 1-D CNN was
transferred to detection of the complex damage

Figure 8. KWS5I railway bridge.
scenarios of Dataset (B), Dataset (C), and Dataset (D).
Finally, the 1-D CNN model obtained from the numer-

ical model was transferred to the experimental model
and real bridge case. The results including two parts:

)
2
(©)

The damage detection results based on the 1-D
CNN and TL in the numerical model;

The damage detection results based on the 1-D
CNN and TL in the experimental model;

The damage detection results based on the 1-D
CNN and TL in the real bridge case.

Detection results of the numerical model

Firstly, ABAQUS was employed for numerical simula-
tions of the bridge model. The vibration signals of the
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Figure 9. (a) Original connections; (b) retrofitting period; (c) after the retrofitting.

intact structure are shown in Figure 10 (where, S1, S2,
S3, ..., and S7 were the acceleration signals of the
acquisition points A, B, C, ..., and G respectively), and
all vibration signals (for all structural scenarios) can be
obtained through corresponding authors. Then, the
training and testing samples of the 1-D CNNs were
obtained by using the method described in Section
“Data and experimental setup.” The damage detection
can be realized in the following four steps:

Step 1, detection results of the single damage scenar-
ios: the training samples were used to train the 1-D
CNNs: After 300 iterations, the accuracy (ratio of cor-
rect detection number to total number) and loss value
(the cross entropy loss* between the predicted results
and the real results) of the validation samples tend to
be stable, which are showed in Figure 11. The testing
results are shown in Figure 12, the average accuracy of
each sensor (acquisition point) was about 90%, and it
reached 100% after the decision-level fusion.

Step 2, detection results of the double damages
simultaneously: The loss value of the training process
(Non-Transfer Learning, that is, NTL, it means that
instead of using the TL strategy, an initialized network
was trained from scratch) is shown in Figure 13; there
was a serious fluctuation, despite 2000 iterations, and
the accuracy and loss value were still unstable . The
testing results are shown in Figure 14(a), which

illustrated the accuracy of each sensor and the
decision-level fusion; the accuracy of the single sensors
was about 80%-92%, and that of the decision-level
fusion was about 96%.

Then, the TL technique was applied to the detection
task of double damages, in which the training samples
were used to fine-tune the pre-trained 1-D CNNs
obtained in Step 1. After 300-600 iterations, the loss
values of the networks tended to be stable (Figure 13).
The testing results are shown in Figure 14(b), the accu-
racy of the single sensors was about 95%, and that of
the decision-level fusion was 100%. Therefore, the
detection accuracy of the double damages was
improved by more than 4% by the TL technique.

Table 5 showed the number of iterations when the
network converged (Note: the total number of itera-
tions based on the TL method = pre-trained
network + TL network, the same hereinafter). The
results showed that the TL technique can significantly
improve the convergence effect of the network.
Especially, the convergence speed was increased by at
least 52.9%.

Step 3, detection results of the triple damages simul-
taneously: the training samples were used to train the
1-D CNNs. The training process of the networks is
shown in Figure 15, there were more serious fluctua-
tions, although 7600 iterations were carried out, the
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loss value were still unstable, there were still some
small fluctuations. The testing results are shown in
Figure 16(a), the accuracy of the single sensor was
about 75%-86%, and that of the decision-level fusion
was about 93%.

Then, the TL technique was applied to the detection
task of triple damages, in which the training samples
were also used to fine-tune the pre-trained 1-D CNNs.
After 2500-4000 iterations, the loss values of the net-
works tended to be relatively stable (Figure 15). The
testing results are shown in Figure 16(b), the accuracy
of the single sensors was improved to about 98%, and
that of the decision-level fusion was 100%. Therefore,
the detection accuracy of the triple damages was
improved by about 7% by the TL technique. Table 6
also showed that the convergence speed was increased
by at least 51.8% (with TL).

Step 4, the pre-trained 1-D CNN was transferred to
10 random size models: The detection accuracy of the

scenarios with single damage, double damages, and tri-
ple damages are shown in Figures A3 to A5 (in
Appendix B). The results showed that the TL could
significantly improve the detection accuracy of the 10
random size models with single damage, double dam-
ages, and triple damages (Tables 7-9), and the accu-
racy of these models were increased by 8.4%, 13.0%,
and 7.9% on average. In particular, the best improve-
ment effects (M1 in Table 7, M7 in Table 8§, M1 in
Table 9) of the scenarios with single damage, double
damages, and triple damages were 29.3%, 43.6%, and
23.4% respectively, their validation processes are shown
in Figure 17(a) to (c), respectively. Figure 17(a) showed
that, although both the NTL and TL methods trended
to convergence, the TL could significantly reduce the
loss value of the networks; Figure 17(b) showed that the
TL could reduce the occurrence of over-fitting phenom-
enon. The loss value of the NTL method gradually
increases with the increase of iteration number, while the
TL was still in a relatively stable state; Figure 17(c)
showed that the TL could significantly reduce the loss
value and quickly converge. The loss value of the NTL
method fluctuated during the training process and did
not converge until the end of training. These detection
results confirm that the TL was valuable for SDD in
terms of the detection accuracy, convergence effect, and
suppression of over-fitting, and so on.

Detection results of the experimental model

The vibration signals of the experimental bridge model
were obtained by using the accelerometers. Figure 18
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Figure 13. Training loss of the NTL and TL.

NTL: non-transfer learning; TL: transfer learning
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NTL: non-transfer learning; TL: transfer learning

showed some acceleration signals of State 1, in which
S1, S2, S3, ..., S7 were the acceleration signals of acqui-
sition points A, B, C, ..., G, respectively.

The training samples of the experimental bridge
model were used to train a 1-D CNN. The training pro-
cess of the network is shown in Figure 19. There were
more serious fluctuations in the training process, even
after 4000 iterations, the loss value were still unstable.
The testing results are shown in Figure 20(a), the accu-
racy of the decision-level fusion was 90%.

Then, the TL technique was used to detect damage
of the experimental bridge model, that is, the 1-D CNN
model was fine-tuned by using the experimental data.
Figure 19 was the training process of the 1-D CNN.
The loss value decreased with the increase of iterations,
and finally tended to be stable, and the loss value was
close to 0. The accuracy of the decision-level fusion

Table 5. The convergence speed of the NTL and TL.

reached 95% (Figure 20(b)). Therefore, the accuracy
was improved by 5%.

The detailed testing results are shown in Table 10,
which listed the comparisons of the detection accuracy
and convergence speed between the NTL and TL. The
results showed that the accuracy of the numerical mod-
els was improved by about 5%. Meanwhile, the TL
technique could significantly improve the convergence
speed of the 1-D CNN. The NTL model did not con-
verge, while the TL model could quickly enter the sta-
ble stage, and the convergence speed could be
improved by at least 75% (experimental model).

Detection results of the real bridge case

The vibration signals of the real bridge were obtained
by using the accelerometers. Figure 21 showed some
acceleration signals of original connections, in which

Sensor 1, Sensor 2, Sensor 3, ..., Sensor 6 were the
acceleration signals of the six accelerometers mounted
on the bridge deck.

The training samples of the real bridge were used to
train a 1-D CNN. Its training process is shown in Figure
22. There were more serious fluctuations in the training
process, even after 400 iterations, the accuracy was still
not ideal, and the loss value decreased slowly. The test-
ing results are shown in Figure 23(a), the accuracy of all
sampling points ranged from 30% to 50%, and the accu-
racy of the decision-level fusion was 55.6%.

Then, the TL technique was used to detect damage
of the real bridge, that is, the 1-D CNN model was
fine-tuned by using the measured data. Figure 24 was
the training process of the 1-D CNN. The loss value
decreased quickly with the increase of iterations and
finally tended to be stable, and the loss value was close
to 0. The accuracy of the decision-level fusion reached
100% (Figure 23(b)). Therefore, the accuracy was
improved by 44.4%.

Model TL/NTL Improved Model TL/NTL Improved

S1 600 + 500 45.0% more Sé6 400 + 500 55.0% more
2000 more 2000 more

S2 300 + 500 60.0% more S7 600 + 500 45.0% more
2000 more 2000 more

S3 500 + 500 50.0% more Average 943 52.9% more
2000 More 2000 more

S4 300 + 500 60.0% more
2000 More

S5 500 + 500 50.0% more
2000 More

NTL: non-transfer learning; TL: transfer learning.
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Figure 16. The testing results of the NTL and TL: (a) NTL and
(b) TL.

NTL: non-transfer learning; TL: transfer learning.

Subsequently, in order to validate the superiority of
the proposed method, the Gate Recurrent Unit (GRU)
was also employed to study the real bridge case. The
comparisons between the detection results of the pro-
posed method and the GRU are shown in Table 11. In
terms of computational complexity, compared with the
GRU (384.3k learning parameters), the 1-D CNN
(140k learning parameters) has fewer learning para-
meters and faster computational performance. In addi-
tion, the combination of 1-D CNN with the TL

strategy can effectively reduce the dimensions of train-
ing samples and achieve 100% detection accuracy with
only 720 training samples; while to achieve the same
accuracy, the GRU combined with the TL strategy
requires three times as many training samples as the
CNN does.

Conclusions

In this paper, the TL-based SDD method has been uti-
lized to detect different damage scenarios. Specifically,
the scenarios with single damage in the numerical mod-
els were used to train a 1-D CNN, which was then
transferred to the scenarios with multi-damage and
random size of the numerical model; it was also trans-
ferred to the experimental model. The proposed
method can transfer the knowledge of simple damage
scenarios to complex scenarios, random size models,
experimental structure, and real bridge case, and
improve the performance in the case of limited sam-
ples. The pre-training network learns some damage
information in the simple damage scenarios of popula-
tion of bridges and obtains the weights of the network
model. When transferring to other scenarios, these
weights can reach the ideal state only by fine-tuning,
avoiding the interference of network uncertainty fac-
tors (e.g., inducing network over-fitting when the num-
ber of samples is too small) during training from
scratch. Compared with the NTL method, the TL
method could significantly improve the accuracy of
damage detection; which may increase about 47%, in
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Table 6. The convergence speed of the NTL and TL.

Model TL/NTL Improved Model TL/NTL Improved
S None None S6 2400 + 500 31.4%
None 7000
S2 2800 + 500 67.1% more S7 5400 + 500 43.4% more
7600 more 7600 more
S3 2600 + 500 54.0% more Average 3567 51.8% more
7600 more 7500 more
S4 2600 + 500 54.0% more
7600 more
S5 2600 + 500 47.4% more
7600 more
NTL: non-transfer learning; TL: transfer learning.
Table 7. The detection accuracy of the NTL and TL (single damage).
Model TL/NTL (%) Improved (%) Model TL/NTL (%) Improved (%)
Ml 55.5 293 Mé 96.2 3.0
84.8 99.2
M2 60.6 16.5 M7 91.1 3.0
77.1 94.1
M3 96.6 1.3 M8 90.7 2.9
97.9 93.6
M4 77.5 5.6 M9 76.7 6.8
83.1 83.5
M5 86.4 6.8 MI0 44.9 8.9
932 53.8
NTL: non-transfer learning; TL: transfer learning.
Table 8. The detection accuracy of the NTL and TL (double damages).
Model TL/NTL (%) Improved (%) Model TL/NTL (%) Improved (%)
Ml 8l.1 9.0 Mé 933 6.7
90.1 100
M2 75.6 18 M7 33.0 43.6
93.6 76.6
M3 87.8 10.6 M8 100 0
98.4 100
M4 95.2 4.5 M9 63.1 34.0
99.7 97.1
M5 100 0.0 MI0 94.9 38
100 98.7
NTL: non-transfer learning; TL: transfer learning.
Table 9. The detection accuracy of the NTL and TL (triple damages).
Model TL/NTL (%) Improved (%) Model TL/NTL (%) Improved (%)
MI 72.6 234 Mé 99.6 04
96.0 100
M2 79.8 13.5 M7 99.6 0.4
933 100
M3 100 0 M8 94.1 5.4
100 99.5
M4 79.7 8.7 M9 86.9 7.7
88.4 94.6
M5 90.3 8.7 MI0 719 1.1
99.0 83.0

NTL: non-transfer learning; TL: transfer learning.
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Figure 20. The testing results of the (a) NTL and (b) TL.

NTL: non-transfer learning; TL: transfer learning.

particular, the convergence speed of the 1-D CNN can
be greatly improved by the TL method; it may increase
by about 50%. Meanwhile, it also has outstanding per-
formance in real bridge case (the accuracy also
increased by 44.4%). These encouraging results con-
firm that the TL is effective and may improve the
detection performance of CNNs.

Table 10. Comparisons of the experimental models between
the NTL and TL.

Accuracy (%) Convergence speed (iterations)

NTL 90 4000 more
TL 95 About 500 + 500
Improved 5 75% more

NTL: non-transfer learning; TL: transfer learning.

Based on the above results, the following conclu-
sions are drawn:

(1) The TL-based SSD method can effectively
improve the detection accuracy of the multi-
damage scenarios (numerical model, increased by
4%—-7%).

(2) The TL-based SSD method can significantly
improve the detection accuracy of the random
size models (numerical model, increased by about
47%).

(3) The TL-based SSD method can effectively
improve the detection accuracy of the experimen-
tal models (increased by about 5%).

(4) The TL-based SSD method can effectively
improve the detection accuracy of the real bridge
case (increased by about 44.4%).
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Figure 23. The testing results of the (a) NTL and (b) TL.
NTL: non-transfer learning; TL: transfer learning.
Table 11. Comparison results with other algorithms.
Number of Detection accuracy and dimensionality of the training samples
learning parameters - — - — - —
Dimensionality =~ Accuracy = Dimensionality = Accuracy = Dimensionality ~ Accuracy
1-D CNN 104k 720 100% None None None None
GRU 384.3k 720 67.4% 1440 87.3% 2160 100%

CNN: convolutional neural network; GRU: Gate Recurrent Unit
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(5) Most importantly, with TL, the convergence References

speed of the CNNs (both numerical and experi-
mental models) increases by more than about
50%.

Author contributions

Shuai Teng: Methodology, Software, Validation, Formal
analysis, Investigation, Data curation, Writing — original
draft, Writing — review & editing, Visualization. Gongfa
Chen: Conceptualization, Methodology, Validation, Formal
analysis, Data curation, Writing — original draft, Writing —
review & editing. Zhaocheng Yan: Validation, Formal analy-
sis, Investigation, Data curation, Writing — original draft,
Writing — review & editing, Visualization. Li Cheng:
Methodology, Formal analysis, Data curation, Writing —
original draft, Writing — review & editing, Visualization.
David Bassir: Conceptualization, Resources, Supervision,
Visualization.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

ORCID iD

Gongfa Chen (i») https://orcid.org/0000-0003-1703-3362

1. Soleimani-Babakamali MH, Sepasdar R, Nasrollahzadeh
K, et al. Toward a general unsupervised novelty detec-
tion framework in structural health monitoring. Comput-
Aided Civ Infrastruct Eng 2022; 37: 1128-1145.

2. Liu J, Xu S, Bergés M, et al. HierMUD: hierarchical
multi-task unsupervised domain adaptation between
bridges for drive-by damage diagnosis. Struct Health
Monit; 0: 14759217221081159.

3. Yan YJ, Cheng L, Wu ZY, et al. Development in
vibration-based structural damage detection technique.
Mech Syst Signal Process 2007; 21: 2198-2211.

4. Cawley P and Adams RD. A vibration technique for
non-destructive testing of fibre composite structures. J
Compos Mater 1979; 13: 161-175.

5. Pandey AK, Biswas M and Samman MM. Damage
detection from changes in curvature mode shapes. J
Sound Vib 1991; 145: 321-332.

6. Sung SH, Koo KY and Jung HJ. Modal flexibility-based
damage detection of cantilever beam-type structures using
baseline modification. J Sound Vib 2014; 333: 4123-4138.

7. Lu Q, Ren G and Zhao Y. Multiple damage location
with flexibility curvature and relative frequency change
for beam structures. J Sound Vib 2002; 253: 1101-1114.

8. Teng S, Chen G, Liu G, et al. Modal strain energy-based
structural damage detection using convolutional neural
networks. Appl Sci Basel 2019; 9: 3376.

9. Cha Y and Buyukozturk O. Structural damage detection
using modal strain energy and hybrid multiobjective opti-
mization. Comput-Aided Civ Infrastruct Eng 2015; 30:
347-358.

10. LiJ, Zhu X, Law SS, et al. A two-step drive-by bridge
damage detection using Dual Kalman Filter. Int J Struct
Stab Dyn 2020; 20: 2042006.


https://orcid.org/0000-0003-1703-3362

Teng et al.

19

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Tibaduiza DA, Mujica LE, Rodellar J, et al. Structural
damage detection using principal component analysis
and damage indices. J Intell Mater Syst Struct 2016; 27:
233-248.

Ni F, Zhang J and Noori MN. Deep learning for data
anomaly detection and data compression of a long-span
suspension bridge. Comput-Aided Civ Infrastruct Eng
2020; 35: 685-700.

Khuc T and Catbas N. Completely contactless structural
health monitoring of real-life structures using cameras
and computer vision. Struct Control Health Monit 2017,
24: e1852.

Yam LH, Yan YJ and Jiang JS. Vibration-based damage
detection for composite structures using wavelet trans-
form and neural network identification. Compos Struct
2003; 60: 403-412.

Mehrjoo M, Khaji N, Moharrami H, et al. Damage
detection of truss bridge joints using Artificial Neural
Networks. Expert Syst Appl 2008; 35: 1122—1131.
Gonzalez MP and Zapico JL. Seismic damage identifica-
tion in buildings using neural networks and modal data.
Comput Struct 2008; 86: 416-426.

Lautour O and Omenzetter P. Damage classification and
estimation in experimental structures using time series
analysis and pattern recognition. Mech Syst Signal Pro-
cess 2010; 24: 1556-1569.

Hakim S, Razak HA and Ravanfar SA. Fault diagnosis
on beam-like structures from modal parameters using
artificial neural networks. Measurement 2015; 76: 45-61.
Chun PJ, Yamashita H and Furukawa S. Bridge damage
severity quantification using multipoint acceleration mea-
surement and artificial neural networks. Shock Vib 2015;
2015: 1-11.

Dackermann U, Li J and Samali B. Dynamic-based
damage identification using neural network ensembles
and damage index method. Adv Struct Eng 2010; 13:
1001-1016.

Ghiasi R, Torkzadeh P and Noori M. A machine-
learning approach for structural damage detection using
least square support vector machine based on a new
combinational kernel function. Struct Health Monit
2016; 15: 302-316.

Zhang S and Cheng L. Wavelet decompositions for high
frequency vibrational analyses of plates. Int J Appl Mech
2017; 9: 1750088.

Zhang S and Cheng L. On the efficacy of the wavelet
decomposition for high frequency vibration analyses. J
Sound Vib 2016; 380: 213-223.

Zhong K, Teng S, Liu G, et al. Structural damage fea-
tures extracted by convolutional neural networks from
mode shapes. Appl Sci Basel 2020; 10: e4247.

Lin YZ, Nie ZH and Ma HW. Structural damage detec-
tion with automatic feature extraction through deep
learning. Comput-Aided Civ Infrastruct Eng 2017; 32:
1-22.

Teng S, Liu Z, Chen G, et al. Concrete crack detection
based on well-known feature extractor model and the
YOLO_v2 network. Appl Sci Basel 2021; 11: 813.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

YuY, Wang C, Gu X, et al. A novel deep learning-based
method for damage identification of smart building
structures. Struct Health Monit 2019; 18: 143-163.
Kiranyaz S, Ince T and Gabbouj M. Real-time patient-
specific ECG classification by 1-D convolutional neural
networks. IEEE Trans Biomed Eng 2016; 63: 664—675.
Abdeljaber O, Sassi S, Avci O, et al. Fault detection and
severity identification of ball bearings by online condition
monitoring. IEEFE Trans Ind Electron 2019: 8136-8147.
Kiranyaz S, Gastli A, Ben-Brahim L, et al. Real-time
fault detection and identification for MMC using 1D
convolutional neural networks. IEEE Trans Ind Electron
2018; 66: 8760-8771.

Abdeljaber O, Avci O, Kiranyaz S, et al. Real-time
vibration-based structural damage detection using one-
dimensional convolutional neural networks. J Sound Vib
2017; 388: 154-170.

Avci O, Abdeljaber O, Kiranyaz S, et al. Wireless and
real-time structural damage detection: a novel decentra-
lized method for wireless sensor networks. J Sound Vib
2018; 424: 158-172.

Zhang Y, Miyamori Y, Mikami S, et al. Vibration-based
structural state identification by a 1-dimensional convo-
lutional neural network. Comput-Aided Civ Infrastruct
Eng 2019; 34: 1-18.

Teng S, Chen G, Liu Z, et al. Multi-sensor and decision-
level fusion-based structural damage detection using a
one-dimensional convolutional neural network. Sensors
2021; 21: 3950.

Kiranyaz S, Avci O, Abdeljaber O, et al. 1D convolu-
tional neural networks and applications: a survey. Mech
Syst Signal Process 2021; 151: 107398.

Dais D, Bal IE, Smyrou E, et al. Automatic crack classi-
fication and segmentation on masonry surfaces using
convolutional neural networks and transfer learning.
Autom Constr 2021; 125: 103606.

Gao Y and Mosalam KM. Deep transfer learning for
image-based structural damage recognition. Comput-
Aided Civ Infrastruct Eng 2018; 33: 748-768.

LiY, Bao T, Xu B, et al. A deep residual neural network
framework with transfer learning for concrete dams
patch-level crack classification and weakly-supervised
localization. Measurement 2022; 188: 110641.

Zheng Z, Qi H, Zhuang L, et al. Automated rail surface
crack analytics using deep data-driven models and trans-
fer learning. Sustainable Cities Soc 2021; 70: 102898.
Wang B, Wang B and Ning Y. A novel transfer learning
fault diagnosis method for rolling bearing based on fea-
ture correlation matching. Meas Sci Technol 2022; 33:
125006.

Almanifi ORA, Ab Nasir AF, Mohd Razman MA, et al.
Heartbeat murmurs detection in phonocardiogram
recordings via transfer learning. Alexandria Eng J 2022;
61: 10995-11002.

Yang Q, Shi W, Chen J, et al. Deep convolution neural
network-based transfer learning method for civil infra-
structure crack detection. Autom Constr 2020; 116:
103199.



20

Structural Health Monitoring 00(0)

43. Teng S, Chen X, Chen G, et al. Structural damage detec-
tion based on convolutional neural networks and popula-
tion of bridges. Measurement 2022; 202: 111747.

Maes K and Lombaert G. Monitoring railway bridge
KWS51 before, during, and after retrofitting. J Bridge Eng
2021;26: 04721001.

Qu Z, Mei J, Liu L, et al. Crack detection of concrete
pavement with cross-entropy loss function and improved
VGG16 network model. IEEE Access 2020; 8:
54564-54573.

Teng S, Chen G, Gong P, et al. Structural damage detec-
tion using convolutional neural networks combining
strain energy and dynamic response. Meccanica 2020; 55:
945-959.

44.

45.

46.

Appendix A
|-D convolution neural network

A standard CNN usually includes a series of convolu-
tion layers, pooling layers, activation layers, a fully
connected layer, a softmax layer, and an output layer.
The raw data (network input) is transferred through a
series of layers, and finally mapped to the class to
which the raw data belongs. Especially, the input of a
I-D CNNisa 1l X N or N X 1 array. As shown in
Figure Al, an N X 1 array goes through a series of

convolution and pooling layers, and the class (Class 1,
Class 2, and so on) of the array is finally obtained in
the output layer.

A convolution process (Figure A2(a)) is to multiply
each element in the convolution kernel with the corre-
sponding element in a sub-region (e.g., Green box, Red
dotted box) of the raw data of the convolution layer and
sum up the products to obtain an element in the feature
map. Each time, the sub-region moves down one step and
the process is repeated until all elements of the raw data
are involved; in the end, the convolution operation will
form a new array (i.e., the feature map).

The pooling operation is a down-sampling tech-
nique that greatly improves the CNN computational
speed and effectively prevents over-fitting. There are
usually two different pooling methods, max pooling
and mean pooling. Max pooling was utilized in this
paper as it is better than mean pooling.*® Figure A2(b)
demonstrates that max pooling picks up the maximum
value of a sub-matrix (I X 2) to form an element of
the feature map. The activation layer, softmax layer,
and fully connected layer are similar to those in the
popular 2-D CNN, which have been described in the
relevant reference.*®

N X1 Array
|
@

Input

Class 3

u (— Output

Figure Al. Architecture of the |-D convolutional neural network (CNN).

C: convolution layer; FCN: fully connected layer; P: pooling layer.
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Figure A2. (a) Convolution and (b) pooling operation.
.
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Figure A3. The testing results of the NTL and TL (single damage scenario).
NTL: non-transfer learning; TL: transfer learning.
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Figure A4. The testing results of the NTL and TL (double damage scenarios).
NTL: non-transfer learning; TL: transfer learning.



22

Structural Health Monitoring 00(0)

= M1 = M2 = M3 = M4
100 <100 <100 100
oy [y oy oy
® 50 ® 50 ® 50 £ 50
3 3 3 3
Q Q Q Q
< < 0 < <
NP PP PSS PP PP PSS PSP PSS PP PP PSS
&9 o 2 o'
QQ N3 Q\\ QQ
3 M5 = M6 < M7 = M8
<100 <100 <100 < 100
oy oy 3 Iy
g 50 g 50 g 50 g 50
Q Q Q
Q Q Q Q
I o0 < o £ o £ o0
> P PFP PGS 2P PFP PSS 2P PP PSS P FPPFP LSS
< <® <® <
< M9 < M10
<100 2100
3 Foy I NTU
g 50 % 50 I T
£ 0 £ 0
PP PSS NI i = AR
Q\\

Figure A5. The testing results of the NTL and TL (triple damage scenarios).

NTL: non-transfer learning; TL: transfer learning.
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