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When a structure is damaged, its vibration signals change. If a single vibration signal is used for
structural damage detection (SDD), it may sometimes lead to low detection accuracy. To avoid
this phenomenon, this paper presents a SDD method based on decision-level fusion (DLF) with
multi-vibration signals. In this study, acceleration (ACC), strain (E), displacement (DIS), and
the fusion signal of all three of these signals (ACC, E and DIS), are studied. The damage
information can be extracted from the vibration signal of a structure by using convolution neural
networks (CNN). The above four vibration signals are used as the inputs to train four CNN
models, and each model outputs a corresponding result. Finally, a DLF strategy is used to fuse
the detection results of each CNN. To demonstrate the effectiveness and correctness of the
proposed method, a steel frame bridge is investigated with numerical simulations and vibration
experiments. The research shows that the damage detection method based on DLF with
multi-vibration signals can effectively improve the accuracy of the CNN damage detection.

Keywords: structural damage detection, decision-level fusion, convolutional neural network,

vibration signal

(Some figures may appear in colour only in the online journal)

1. Introduction

Structural damage detection (SDD) is an important research
task in the field of structural health monitoring (SHM) [1].
SDD aims to find defects in a structure in time, so that cor-
responding measures can be taken to avoid major losses due
to structural damage. Early SDD mainly relies on site inspec-
tions, which cost a lot of manpower and material resources,
and is only effective for any surface damage of structures.
When a structure is damaged, its internal physical character-
istics (stiffness, mass, damping) will be changed, which will
cause its modal parameters and vibration signals to change.

* Author to whom any correspondence should be addressed.
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Therefore, the vibration-based SDD methods were proposed.
The SDD methods based on vibration are divided into para-
metric methods and nonparametric methods [2]. The paramet-
ric SDD methods are based on modal parameters and their
derivatives (natural frequency [3], mode shape [4] modal strain
energy [5, 6], modal flexibility [7], modal curvature [8], etc)
of the structure. The nonparametric methods directly identify
structural damage from the measured vibration signals (accel-
eration [9], strain [10], and displacement [11]) of the structure.

Although these methods have significantly improved the
accuracy of SDD, they still have many shortcomings. For
example, in the actual application of the parametric meth-
ods, the modal parameters are easily affected by external
factors (e.g. temperature, humidity, etc). When some struc-
tures are locally damaged, only high-order modal parameters

© 2022 I0P Publishing Ltd
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are evidently affected, which is difficult measure. For non-
parametric methods, a large amount of data needs to be ana-
lyzed and processed. Sometimes, the accuracy and efficiency
of damage detection are questioned due to the influence of the
analyst’s knowledge. Therefore, it is necessary to establish a
systematic, efficient, and automatic data processing tool for
extracting damage information.

Machine learning (ML) methods provide a new solution
to the above-mentioned problems. At present, ML algorithms
are widely used in SDD. Classic algorithms include support
vector machines [12] and artificial neural networks [13]. For
example, Mehrjoo et al [14] proposed a neural network-based
SDD technology for simple truss and Louisville bridge truss.
In addition, ML algorithms have also been applied to some
steel frames [15], bridge models [16], and actual structures
[17]. A large amount of literature shows that the quality of the
ML methods largely depends on the extracted features. Feature
extraction techniques such as modal estimation [18], wave-
let transform [19] and principal component analysis (PCA)
[20], usually lead to considerable computational complexity
and costs, which hinders the use of the ML methods in real-
time structural health detection operations.

As one of the classic deep learning (DL) and supervised
learning algorithms, the convolution neural network (CNN)
provides another new approach for SDD due to its excellent
feature extraction ability. The CNN can learn to associate
features with the desired output, and extract features auto-
matically. Therefore, there is no need to extract features in
advance, which means CNN algorithms perform well in com-
plex tasks by decomposing complex tasks into simpler ones.
Recently, the CNN has achieved good results in many engin-
eering applications [21, 22], which attracts many scholars to
focus on the CNN. Zhong et al [23] proved that the CNN
could extract damage information from modal shapes. Lin et al
[24] also found that the CNN could obtain damage informa-
tion from acceleration signals. Their results show that the CNN
based on acceleration signals could detect 94% of the damage.
Teng et al [25] explained the CNN feature extraction process
in structural surface defect detection. The above works show
that the CNN performs well in damage detection. Sometimes,
using a single vibration signal or a single modal parameter as
a damage indicator cannot fully reflect the true state of a struc-
ture. In order to obtain complete information about the struc-
ture, a new method of data analysis is needed.

The data-level fusion strategy provides an advanced
method for SDD. By fusing multiple signals, it may com-
prehensively reflect the true state of a structure, avoiding the
shortcomings of incomplete information carried by a single
vibration signal. Chao et al [26] studied an adaptive decision-
level fusion (DLF) strategy for the fault diagnosis of axial pis-
ton pumps using multiple channels of vibration signals. Li et al
[27] proposed an ensemble deep CNN model with improved
D-S evidence fusion for bearing fault diagnosis. In the SHM
field, the time domain and frequency domain of the bridge
vibration signal are fused to detect the abnormal signal of the
structure in a study [28]. The accuracy of damage detection
is improved by fusing the multi-mode strain energy (MSE) of

the structure [29] and the MSE with dynamic response [6],
and the SDD method based on vibration theory and multi-
sensor signals [30] is also implemented. As the vibration sig-
nal contains the state information of the structure [31], the
vibration signal can be analyzed for SDD. The fusion of mul-
tiple vibration signals is expected to improve the detection
accuracy. The existing technology uses the fusion of mul-
tiple vibration signals as the input of the CNN (i.e. data-level
fusion). However, the effect of each vibration signal to detect
structural damage is different, and it is impossible to know in
advance which vibration signal has the best effect on damage
detection.

Therefore, in order to further improve the accuracy of dam-
age detection, a SDD method based on multiple-vibration sig-
nals and DLF strategy is proposed to overcome the disadvant-
ages discussed above. In this research, each vibration signal is
used to train a CNN model, and then a DLF is performed on
the detection results of the multiple CNN models, and finally
the damaged state of the structure is obtained. To validate the
effectiveness of the proposed method, a steel frame bridge is
investigated with numerical simulations and vibration experi-
ments, where scenarios with a single damage and double dam-
ages are set up in the numerical simulations, and multiple dam-
age scenarios are designed in the experiments.

2. Methods and materials

A 3D steel frame bridge is taken as the research object. The
vibration signals of the structure are obtained under different
damage scenarios from numerical simulations and vibration
experiments, namely the ACC signal, E signal and DIS signal.
Then the above signals are used as the CNN input for damage
detection. The specific process is shown in figure 1.

2.1. Numerical and experimental models

The numerical model (figure 2) is established by using the
finite element software package ABAQUS (SIMULIA Inc.,
Providence, USA). The length, width, and height of the model
are 2.4, 0.3 and 0.3 m, respectively. Its density, Young’s mod-
ulus, Poisson’s ratio, and damping ratio are 7800 kg m~3,
212 GPa, 0.3 and 0.02, respectively. The bridge frame is made
of 30 mm x 30 mm x 2 mm equilateral steel angles, and the
web members are 20 mm x 2 mm flat steel bars. The members
are numbered S1, S2, ..., and S60 (figure 2). The web bars are
connected with the upper and lower chords by bolts, the model
is fixed at both ends, and the beam element (B31) is adopted
in the numerical simulations.

The bridge model adopted in the vibration experiments
is shown in figure 3. The flat steel bars are connected by
bolts, and the damage to a bar is simulated by cutting
off its cross section. The equipment used in the vibration
experiments (figure 4) includes: acceleration sensors (YD-
2150), damaged and intact bars, force hammer (JML-03),
strain gauges, dynamic data acquisition instrument (JM-3841),
and PC.
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Figure 1. SSD process using CNN with data-level fusion and DLF.
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Figure 2. Numerical simulation model of the 3D steel frame bridge.

2.2. Samples obtained from numerical simulations and
vibration experiments

First, impulse forces (1 kN) are applied to the structure, the
excitation time is 4 s, and the sampling increment is 0.01 s.
Thus, one ACC or E signal can be obtained for each excitation,
which contains 400 sampling points. The vibration signals
of 61 scenarios (the intact structure and 60 damaged struc-
tures) are obtained in batches through ABAQUS and Python,
as shown in figure 5 (e.g. for the ACC signal). In this study, the
damage is simulated as the reduction of the elastic modulus,

which assumes that the reduction of the elastic modulus is pro-
portional to the damage degree of the flat steel. For example,
if the structural damage is 50%), its elastic modulus is reduced
to half of its original value.

In the cases of a single damage, a total of 361 sets of data
(6 damage degree x 60 bars + 1 intact bar) with six damage
degrees of 10%, 20%, 40%, 60%, 75%, and 90% for each bar
are used as samples to train the network. A total of 61 sets
of data (60 damaged structures + 1 intact structure) with a
damage degree of 50% are used as the testing samples to test
the network.
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Figure 4. Experimental equipment: (a) acceleration sensor (YD-2150), (b) intact and damaged bars, (c) force hammer (JML-03), (d) strain

gauge, (e) dynamic acquisition instrument (JM-3841), (f) PC.

In the case of two damages, two damaged bars are
randomly selected from S3, S5, S6, S11, S18, S19, S20,
S25, S34, S35, S40, S41, S42, S43, S49, S50, S51, S54
and S57 (figure 2). Each bar damage is 50%, so there
are 171 (C3y) cases in total, 11 of which are selected as
the testing sets, and the rest (160 cases) are used as the
training sets. The specific testing samples are shown in
table 1.

Secondly, the implementation for the vibration experiment
is as follows: the ACC signals and the E signals are measured
by the acceleration sensors and the strain gauges, respectively.
The sampling frequency of the dynamic acquisition instrument
is adjusted to 100 Hz, and the acquisition time is 60 s. The
acceleration sensors are set up at seven positions at the bottom
of the structure (A, B, ..., G), and the strain gauges are set up
on the 11 bars in the front row, as shown in figure 6. Then the
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Figure 5. Acquisition of the CNN samples.

Table 1. Test samples for the scenarios with two damages.

Data number Testing set

Data number Testing set

El S3,S6

E2 S3,S11
E3 S3, 520
E4 S3, 825
E5 S3,S34
E6 S5, S34

E7 S18, S19
E8 S35, S40
E9 S35, 542
E10 S35, S49
Ell S41, S43

T Acceleration collection point % Excitation point * Strain collection point

Figure 6. Placement points of the sensors and the locations of the damaged members.

model is hit six times at the excitation point with a force ham-
mer (within 60 s). The corresponding DIS signal is obtained
by integrating the original ACC signal twice.

Considering the influence of excitation points on damage
detection, five excitation points were set in this study, as shown
in figure 10, namely P, P, P3, P4 and Ps. The damage
scenarios of the experiment are implemented by replacing the
intact bars with damaged ones, and the specific damage scen-
arios are as follows (figure 8): scenario 1 (intact state), scen-
ario 2 (ES1 damaged), scenario 3 (ES2 damaged), scenario 4
(ES3 damaged), scenario 5 (ES1 and ES2 damaged), scenario

6 (ES1, ES2 and ES3 damaged). In each scenario, the signals
collected from the first four excitations are used as the training
sets, and the signals collected from the last two excitations are
used as the testing sets. As shown in figure 7, four CNN mod-
els (CNN1, CNN2, CNN3, and CNN4) are trained with the
four vibration signals (ACC, E, DIS, and ACC & E & DIS),
respectively.

Since the amount of acquired data is relatively small, the
sample augment technology can be used to expand the test
samples as more training samples make the CNN predic-
tion better. One acceleration signal can be obtained for each
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Table 2. CNN samples obtained from experiments.

Damage Number of Number of
scenarios ~ Scenario training samples  test samples
SD1 Intact 1204 602
SD2 ES1

SD3 ES2

SD4 ES3

SD5 ES1, ES2

SD6 ESI1, ES2, ES3

excitation, which contains 400 sampling points. For the six
excitations, there are six such acceleration signals. The spe-
cific augment steps are as follow (figure 5): a 100 x 7 sliding
window is used along the time direction, and the sliding step is
one point, so that each signal can produce 301 samples, and the
specific scenarios and sample numbers are shown in table 2.

2.3. Structure of the CNN

A CNN structure mainly includes: input layer, convolution
layers, pooling layers, fully connected layer, output layer
(softmax layer, classification layer and regression layer), and
activation functions. In this study, Leaky ReLU [32] is used
as the activation function, as shown in figure 8, where «
is a very small value, usually 0.01. The optimizer, Adam
[33], which combines the advantages of two optimization
algorithms, AdaGrad [34] and RMSProp [35], is used. It has
the advantages of simple implementation, efficient calculation,
and Ifewer memory requirements.

The ACC signals and the DIS signals are stored in a matrix
of 400 x 7, the E signal is stored in a matrix of 400 x 60,
and the fusion of the three signals is stored in a matrix of
400 x 74 (400, 7 4+ 7 4+ 60 = 74). Take the ACC signal as
an example, since seven acquisition points of acceleration are

set, the sampling time is 4 s, and the increment is 0.01 s, so
each acquisition point will acquire 400 sampling points. In
this study, the signals collected at each collection point are
placed in columns to form a 400 x 7 matrix. The feature mat-
rix of 397 x 6 is obtained through the first convolution layer
(kernel number: 64, kernel size: 4 x 2), and then after max-
imum pooling layer (size 3 x 1, step size 1), the feature matrix
of 395 x 6 is obtained. Then the second convolution (kernel
number: 128, kernel size: 2 x 2) is carried out and the fea-
ture matrix of 394 x 5 is obtained. Finally, the feature matrix
is mapped to the damage location of the structure through the
softmax layer and the classification layer. The CNN structure
and parameters are shown in figure 9 and table 3.

The output is the damage location. In this paper, for a single
damage scenario, the label of the output damage location is set
to 1,2, ...,60, 61. If the output is 1, the prediction is an intact
structure, and if the output is 2, damage to the No. 1 member is
predicted, and so on. For double damage scenarios, the damage
location is output in the form of a vector. For example, the
vector ([0, 0.5, 0.5, 0, ..., 0, 0, O]) represents the damage of
No. 2 and No. 3 members, and the damage degree is 50%, the
vector ([0, 0, 0, 0.5, ..., 0, 0, 0.5]) represents the damage of
No. 4 and No. 60 members, and the damage degree is 50%,
and so on.

The DLF is similar to the voting process, and the one with
more votes wins. In this paper, the detection results are the
ones in which more vibration signals vote. This method can
effectively avoid the situation where the detection effect is not
ideal when using one damage indicator. Four CNN models
are trained by using four signals respectively, and the output
results of the test samples from each network are fused at a
decision level [36], which is implemented as follows:

F; = [aj, b;, c;, d}] (D
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Figure 8. Function image: (a) ReLU, (b) Leaky ReL.U.
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Table 3. Parameters of a CNN.

Layer Type Kernels number Kernels size Step Activation

1 Input None None None None

2 Convolution 64 4 x2 [1,1] Leaky ReLu
3 Max pooling None 3x1 [1,1] None

4 Convolution 128 2x2 [1,1] Leaky ReLu
5 FC None None None None

6 Softmax None None None None

7 Output None None None None

where i = 1, 2, 3, 4, and a;, b;, ¢;, d; are the detection results of ~ where mode is a Matlab (MathWorks Inc., Providence, USA)
the ith network in each type, the DLF is calculated according function, which calculates the number with the highest fre-

to the detection results of the four networks: quency in each column, that is, the four networks vote on
decisions, and the decision with the most votes is the final
Fi a; by ¢ d result. Figure 10 depicts an overview of the proposed DLF
o F|_ | a by ¢ d ° method.
b F3 a3 by 3 ds
F4 as by c4 dy 3. Results and discussions

This section includes two parts: (a) based on the results of
DLF = mode(Fp, 2) (3) numerical simulations, the results of a single network are
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Figure 11. Training curves of CNNs

compared with DLF; (b) based on the results of vibration
experiments, it is validated that the result of DLF is better than
that of a single network.

3.1. SDD results of numerical simulations

For the scenarios with a single damage, the training pro-
cesses of these four networks (CNN1, CNN2, CNN3, and
CNN4) are shown in figure 11. After 1800 iterations, the accur-
acy curves of the four networks reach convergence, and the
loss values tend to be zero. Figure 12 shows the detection
accuracy of these four CNNs. It can be seen that the CNN4
model has a higher prediction accuracy than the other three.
Therefore, this paper divides the weights of the four CNN
models according to their prediction performance, and the
weights of CNN4, CNN3, CNN1, CNN2 are 0.4, 0.3, 0.2, 0.1

: (a) accuracy curves; (b) loss curves.

respectively. Table 4 lists the different detection results of the
four CNNSs for the same damage scenario.

According to the specific detection results listed in table 4,
for S1 damage, the CNN1, CNN2, and CNN3 detect S39,
while the CNN4 detects S1; for S7 damage, the detection res-
ult of the CNN1, CNN3 and CNN4 is S7, and the detection
result of the CNN2 is S60; according to the aforementioned
DLF strategy, the detection results of the four network mod-
els are fused. Therefore, for S1 damage and S7 damage, the
final detection results are S1 and S7. A special scenario needs
to be explained: for S47 damage, the CNN1 and CNN2 detect
S39, while the CNN3 and CNN4 detect S47. When there are
prediction results with the same number of votes, the CNN4
group is selected as the final decision result (according to
the weights proposed above), that is, the final detection result
is S47.
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Table 4. Detection results of the four CNNs for the same damage scenario.

Actual Predicted damage (S) Actual Predicted damage (S)
damage (S) CNN1 CNN2 CNN3 CNN4 damage(S) CNNI CNN2 CNN3 CNN4
1 39 39 39 1 26 28 26 26 26
7 7 60 7 7 27 27 13 27 27
8 8 53 8 8 28 27 28 28 28
14 14 61 14 14 40 40 40 41 40
15 15 15 22 15 41 41 41 41 40
16 15 16 17 16 47 39 39 47 47
17 17 3 17 5 49 49 50 29 49
18 49 18 58 18 53 53 8 53 53
19 20 4 19 19 57 45 57 57 57
20 20 44 20 20 58 58 45 58 58
21 19 21 21 21 59 59 34 59 59
22 22 7 22 22 60 7 60 60 60
23 23 23 53 23 61 61 61 60 61
24 24 24 24 21 — — — — —

Table 5. Comparisons of detection accuracy before and after DLF
for scenarios with a single damage.

CNN type Accuracy DLF Improvement
CNNI1 80.3% 98.4% 18.1%
CNN2 77.1% 21.3%
CNN3 88.5% 9.9%
CNN4 93.4% 5.0%
Average 84.8% — 13.6%

The results show that the detection accuracy of the DLF
strategy reaches 98.4%, which is an average improvement of
13.6% in accuracy compared with the single network before
the fusion, where the specific details are shown in table 5.

In order to further validate the effectiveness of the DLF
strategy, a double damage scenario is set up. In the double
damage scenarios, CNN predicts the damage degree value of
each member, and then takes the member with the largest dam-
age degree as the corresponding damage location. Figure 13
shows the process of the prediction results of four CNNs under
the E1. The damage locations predicted by CNN1 are No. 6
and No. 41 members. The other three CNN predictions are the
No. 3 and No. 6 members, and so on. Table 6 shows the differ-
ent detection results of the four networks for the same damage
scenario with double damages.

For double-damage scenarios, according to the DLF
strategy, the results show that the accuracy rate reaches 100%
after the DLF. Compared with the detection accuracy of the
four single networks, the accuracy rate is increased by 20.5%
on average. The specific situation is shown in table 7. The res-
ults demonstrate that the scenarios with double damages fur-
ther validate that the SDD accuracy rate is improved by the
DLF strategy.

3.2. SDD results of vibration experiments

The following only describes the excitation point P3 in
detail, and the other four excitation points only give the
corresponding results. The vibration signals under differ-
ent scenarios are obtained through vibration experiments.
Figures 14 and 15 are the acceleration time history curves
of the seven points and the strain time history curves
of 11 bars collected under the intact scenario. Figure 16
is the displacement time history curves of the seven
points.

Four CNN models are trained by samples described in
table 2 in section 2.2. Figure 17 shows the training processes
of the four networks. As the number of iterations increases, the
accuracy rate increases, and the loss value decreases. When the
number of iterations reaches 3600, the training curves finally
converge. Figure 18 shows the average detection accuracy
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Figure 13. Process of prediction results of four CNNs under the E1: (a) CNNI1, (b) CNN2, (c) CNN3, (d) CNN4.

Table 6. Damage detection of four types of CNNs.

Actual Predicted damage (S) Actual Predicted damage (S)
damage (S) CNN1 CNN2 CNN3 CNN4 damage(S) CNNI CNN2 CNN3 CNN4
El 6,41 3,6 3,6 3,6 E7 18,35 18,19 18,20 18,19
E4 5,25 3,33 3,25 3,24 ES8 35,55 35,40 35,40 35,40
E5 11,34 3,34 3,34 3,34 Ell 40,43 41,43 41,43 41,43
E6 11,34 5,34 5,34 5,11 — — — — —

Table 7. Comparisons of detection accuracy for double damages
before and after DLF.

CNN type Accuracy DLF Improvement
CNN1 54.5% 100% 45.5%
CNN2 90.9% 9.1%
CNN3 81.8% 18.2%
CNN4 90.9% 9.1%
Average 79.5% 20.5%

rates of four CNNSs in scenario 1 to scenario 6. Tables 8—11
show the specific detection results of the four CNNs in each
scenario, respectively.

Due to the large number of samples (3612 samples),
table 12 only presents the detection errors for some of the scen-
arios of CNN1, CNN2, CNN3 and CNN4.

According to the proposed DLF strategy, the predicted res-
ults of the four networks are fused. The results show that the
average accuracy rate of scenario 1 to scenario 6 using the DLF
strategy is 96.8%, and it is 5%—25.9% higher than that of a
single network (table 13).

The prediction results for the excitation point P; are
described in detail above. Table 14 lists the average predic-
tion accuracy of five excitation points (P, P, P4, P3 and Ps)
in six scenarios (SD1, SD2, SD3, SD4, SD5, SD6).

Table 14 demonstrates that damage detection is related to
excitation points, and the influence of the excitation points on
the prediction results of a single network is smaller than that on
the DLF results. However, no matter which excitation point is
considered, the prediction accuracy is improved with the DLF.

In summary, the result using DLF is better than the res-
ult of a single network. The scenarios with a single damage
and double damages in numerical simulations and the various
scenarios in the vibration experiments validate that the pro-
posed method can effectively improve the accuracy of damage
detection.

3.83. Discussions

In this paper, a supervised DL algorithm is used for SDD, and
a DLF strategy is combined to improve the detection accuracy.
Numerical simulations and vibration experiments are investig-
ated to demonstrate the feasibility of the method. The limita-
tions of this study are as follows.

Supervised learning algorithms need a large amount of
labeled data, which is difficult or expensive to collect. In recent
years, with the development of artificial intelligence, unsu-
pervised learning [37, 38], semi-supervised learning [39], and
active learning [40] have been widely applied in the field of
SHM. On the other hand, since the damage to structures is
complex, it is necessary to consider the influence of factors
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Table 8. Detection results of CNNI1.
Predicted damage scenario
Damage scenario 1 2 3 4 5 6 Total Accuracy
Damage scenario 1 507 95 0 0 0 0 602 84.2%
2 23 567 0 2 6 4 602 94.2%
3 1 82 503 13 3 0 602 83.6%
4 0 0 0 600 2 0 602 99.7%
5 0 0 0 0 602 0 602 100%
6 0 3 0 177 16 406 602 67.4%
Total 531 747 503 792 629 410 3612 88.2%
Table 9. Detection results of CNN2.
Predicted damage scenario
Damage scenario 1 2 3 4 5 6 Total Accuracy
Damage scenario 1 124 478 0 0 0 0 602 20.6%
2 124 478 0 0 0 0 602 79.4%
3 0 80 462 55 5 0 602 76.7%
4 2 41 0 509 50 0 602 84.6%
5 0 33 17 20 511 21 602 84.9%
6 0 24 0 1 100 477 602 79.2%
Total 250 1134 479 585 666 498 3612 70.9%

such as load and environment, and so on. These challenges are
indeed major ones facing SHM at present. The relevant schol-
ars have proposed population-based methods (a large number
of similar structures to analyze the common damage features
of a population) and detect damages in similar structures.

In future work, the DLF method proposed in this
paper will be combined with the population-based meth-
ods and other learning algorithms (unsupervised learning,
semi-supervised learning, active learning) to improve its

practicability.
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Table 10. Detection results of CNN3.

Predicted damage scenario

Damage scenario 1 2 3 4 5 6 Total Accuracy
Damage scenario 1 167 424 0 0 11 0 602 70.4%
2 167 424 0 0 11 0 602 70.4%
3 4 26 562 10 0 0 602 93.4%
4 0 3 0 506 27 66 602 84.1%
5 0 0 0 0 602 0 602 100%
6 0 0 0 8 81 513 602 85.2%
Total 338 877 562 524 732 579 3612 83.9%
Table 11. Detection results of CNN4.
Predicted damage scenario
Damage scenario 1 2 3 4 5 6 Total Accuracy
Damage scenario 1 500 102 0 0 0 0 602 83.1%
2 59 523 0 0 1 19 602 86.9%
3 0 1 591 10 0 0 602 98.2%
4 0 0 0 597 0 5 602 99.2%
5 0 0 48 2 529 23 602 87.9%
6 0 2 0 87 0 513 602 85.2%
Total 559 628 639 696 530 560 3612 91.8%

Table 12. Some incorrect detections of the four networks.

Actual damage

(scenario)

Predicted damage (scenario)

Actual damage Predicted damage (scenario)

CNNI1 CNN2 CNN3 CNN4 (scenario) CNN1 CNN2 CNN3 CNN4
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Table 13. Comparison of accuracy rates before and after DLE.

Scenario CNNI1 CNN2 CNN3 CNN4 DLF Improvement
SD1 84.2% 20.6% 70.4% 83.1% 91.4% 7.2%-70.8%
SD2 94.2% 79.4% 70.4% 86.9% 96.3% 2.1%-25.9%
SD3 83.6% 76.7% 93.4% 98.2% 100% 0.2%-23.3%
SD4 99.7% 84.6% 84.1% 99.2% 100% 0.3%—-15.9%
SD5 100% 84.9% 100% 87.9% 100% 0%-15.1%
SD6 67.4% 79.2% 85.2% 85.2% 93.1% 7.9%—-25.1%
Average 88.2% 70.9% 83.9% 91.8% 96.8% 5%—-25.9%
Table 14. Average prediction accuracy after DLF in six scenarios.
Excitation
point CNN1 CNN2 CNN3 CNN4 DLF Improvement
Py 81.3% 68.9% 80.1% 86.5% 95.3% 8.8%—-26.4%
P, 86.5% 66.9% 77.1% 89.3% 95.6% 6.3%—-28.7%
P3 88.2% 70.9% 83.9% 91.8% 96.8% 5%—-25.9%
Py 85.3% 68.5% 81.6% 88.4% 96.4% 8%—21.9%
Ps 82.4% 69.3% 75.6% 92.2% 94.2% 2%-24.9%

4. Conclusions

Based on DLF strategy, the detection results of each CNN
model are fused to obtain the final detection results.

From the above discussions, the following conclusions can
be drawn:

(a) In the numerical simulations, the scenarios with a single
damage and double damages are used to validate the pro-
posed DLF strategy. Compared with the detection res-
ults of a single network, the accuracy rate based on DLF
strategy increases by 5%-21.3%, i.e. an average increase
of 13.6%; for scenarios with double damages, the detec-
tion accuracy increases by 9.1%—45.5%, i.e. an average
increase of 20.5%.

(b) Six damage scenarios are set up in the vibration experi-
ments. The average accuracy rate after DLF is as high as
96.8%, which is 5%—-25.9% higher than the accuracy of a
single network.

(c) The results of the proposed DLF strategy are better than
that of any single network.

(d) Damage detection based on multiple signals can more
comprehensively reflect the structural state and avoid the
disadvantages of a single signal.
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